TBI lung dose comparisons using bilateral and anteroposterior delivery techniques and tissue density corrections

نویسندگان

  • Daniel W. Bailey
  • Iris Z. Wang
  • Tara Lakeman
  • Lee D. Hales
  • Anurag K. Singh
  • Matthew B. Podgorsak
چکیده

This study compares lung dose distributions for two common techniques of total body photon irradiation (TBI) at extended source-to-surface distance calculated with, and without, tissue density correction (TDC). Lung dose correction factors as a function of lateral thorax separation are approximated for bilateral opposed TBI (supine), similar to those published for anteroposterior-posteroanterior (AP-PA) techniques in AAPM Report 17 (i.e., Task Group 29). 3D treatment plans were created retrospectively for 24 patients treated with bilateral TBI, and for whom CT data had been acquired from the head to the lower leg. These plans included bilateral opposed and AP-PA techniques- each with and without - TDC, using source-to-axis distance of 377 cm and largest possible field size. On average, bilateral TBI requires 40% more monitor units than AP-PA TBI due to increased separation (26% more for 23 MV). Calculation of midline thorax dose without TDC leads to dose underestimation of 17% on average (standard deviation, 4%) for bilateral 6 MV TBI, and 11% on average (standard deviation, 3%) for 23 MV. Lung dose correction factors (CF) are calculated as the ratio of midlung dose (with TDC) to midline thorax dose (without TDC). Bilateral CF generally increases with patient separation, though with high variability due to individual uniqueness of anatomy. Bilateral CF are 5% (standard deviation, 4%) higher than the same corrections calculated for AP-PA TBI in the 6 MV case, and 4% higher (standard deviation, 2%) for 23 MV. The maximum lung dose is much higher with bilateral TBI (up to 40% higher than prescribed, depending on patient anatomy) due to the absence of arm tissue blocking the anterior chest. Dose calculations for bilateral TBI without TDC are incorrect by up to 24% in the thorax for 6 MV and up to 16% for 23 MV. Bilateral lung CF may be calculated as 1.05 times the values published in Table 6 of AAPM Report 17, though a larger patient pool is necessary to better quantify this trend. Bolus or customized shielding will reduce lung maximum dose in the anterior thorax.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of anthropomorphic phantoms for use in total body photon irradiation and total skin electron irradiation studies

Introduction: Total Skin Electron Therapy (TSET) and Total Body Irradiation (TBI) are kinds of treatment which use electron and photon beams to treat special types of cancers. The aim of these techniques are to deliver uniform dose to the entire skin while minimizing delivered dose to organs at risk. To check the homogeneity of dose delivery in TBI and TSET, using a humanoid ph...

متن کامل

Review of techniques for improving the uniformity of dose distribution in total body irradiation (TBI) with parallel – opposed anterior and posterior geometry

      Total body irradiation (TBI) is a kind of external beam radiotherapy which is used in conjunction with chemotherapy with the purpose of immunosuppression before bone marrow transplantation. As recommended by AAPM dose distribution uniformity in TBI is very important and dose variation must be within ±10% of prescription dose. Patients treatment geometry for TBI techniques fall into two co...

متن کامل

Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom

Background: In treating patients with radiation, the degree of accuracy for the delivery of tumor dose is recommended to be within ± 5% by ICRU in report 24. The experimental studies have shown that the presence of low-density inhomogeneity in areas such as the lung can lead to a greater than 30% change in the water dose data. Therefore, inhomogeneity corrections should be used in treatment pla...

متن کامل

Comparison of different TBI techniques in terms of dose homogeneity

Introduction: Total body irradiation (TBI) is a form of external beam radiotherapy which is used in conjunction with chemotherapy with the purpose of immunosuppression. Since the target in TBI is the whole body so a uniform dose distribution throughout the entire body during TBI is necessary. As recommended by AAPM dose variation must be within ±10% of prescription dose. A revi...

متن کامل

Design of homogeneous and heterogeneous human equivalent thorax phantom for tissue inhomogeneity dose correction using TLD and TPS measurements

Background: The purpose of this study is to fabricate inexpensive in-house low cost homogeneous and heterogeneous human equivalent thorax phantom and assess the dose accuracy of the Treatment Planning Systems (TPS) calculated values for different lung treatment dosimetery. It is compared with Thermoluminescent Dosimeter (TLD) measurement. Materials and Methods: Homogeneous and heterogeneous tho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015